Статистический метод

Рейтинг лучших бинарных брокеров за 2020 год:
  • FinMax
    FinMax

    Бонусы для новых трейдеров до 30 000$!

  • BINARIUM
    BINARIUM

    Огромный раздел по обучению. Бесплатные прогнозы и стратегии!

Статистический метод

Статистические методы анализа данных применяются практически во всех областях деятельности человека. Их используют всегда, когда необходимо получить и обосновать какие-либо суждения о группе (объектов или субъектов) с некоторой внутренней неоднородностью.

Целесообразно выделить три вида научной и прикладной деятельности в области статистических методов анализа данных (по степени специфичности методов, сопряженной с погруженностью в конкретные проблемы):

а) разработка и исследование методов общего назначения, без учета специфики области применения;

б) разработка и исследование статистических моделей реальных явлений и процессов в соответствии с потребностями той или иной области деятельности;

в) применение статистических методов и моделей для статистического анализа конкретных данных.

Прикладная статистика

Прикладная статистика — это наука о том, как обрабатывать данные произвольной природы. Математической основой прикладной статистики и статистических методов анализа является теория вероятностей и математическая статистика.

Описание вида данных и механизма их порождения — начало любого статистического исследования. Для описания данных применяют как детерминированные, так и вероятностные методы. С помощью детерминированных методов можно проанализировать только те данные, которые имеются в распоряжении исследователя. Например, с их помощью получены таблицы, рассчитанные органами официальной государственной статистики на основе представленных предприятиями и организациями статистических отчетов. Перенести полученные результаты на более широкую совокупность, использовать их для предсказания и управления можно лишь на основе вероятностно-статистического моделирования. Поэтому в математическую статистику часто включают лишь методы, опирающиеся на теорию вероятностей.

Мы не считаем возможным противопоставлять детерминированные и вероятностно-статистические методы. Мы рассматриваем их как последовательные этапы статистического анализа. На первом этапе необходимо проанализировать имеющие данные, представить их в удобном для восприятия виде с помощью таблиц и диаграмм. Затем статистические данные целесообразно проанализировать на основе тех или иных вероятностно-статистических моделей. Отметим, что возможность более глубокого проникновения в суть реального явления или процесса обеспечивается разработкой адекватной математической модели.

В простейшей ситуации статистические данные — это значения некоторого признака, свойственного изучаемым объектам. Значения могут быть количественными или представлять собой указание на категорию, к которой можно отнести объект. Во втором случае говорят о качественном признаке.

При измерении по нескольким количественным или качественным признакам в качестве статистических данных об объекте получаем вектор. Его можно рассматривать как новый вид данных. В таком случае выборка состоит из набора векторов. Есть часть координат — числа, а часть — качественные (категоризованные) данные, то говорим о векторе разнотипных данных.

Одним элементом выборки, то есть одним измерением, может быть и функция в целом. Например, описывающая динамику показателя, то есть его изменение во времени, — электрокардиограмма больного или амплитуда биений вала двигателя. Или временной ряд, описывающий динамику показателей определенной фирмы. Тогда выборка состоит из набора функций.

Элементами выборки могут быть и иные математические объекты. Например, бинарные отношения. Так, при опросах экспертов часто используют упорядочения (ранжировки) объектов экспертизы — образцов продукции, инвестиционных проектов, вариантов управленческих решений. В зависимости от регламента экспертного исследования элементами выборки могут быть различные виды бинарных отношений (упорядочения, разбиения, толерантности), множества, нечеткие множества и т. д.

Итак, математическая природа элементов выборки в различных задачах прикладной статистики может быть самой разной. Однако можно выделить два класса статистических данных — числовые и нечисловые. Соответственно прикладная статистика разбивается на две части — числовую статистику и нечисловую статистику.

Числовые статистические данные — это числа, вектора, функции. Их можно складывать, умножать на коэффициенты. Поэтому в числовой статистике большое значение имеют разнообразные суммы. Математический аппарат анализа сумм случайных элементов выборки — это (классические) законы больших чисел и центральные предельные теоремы.

Народный рейтинг русских брокеров:
  • FinMax
    FinMax

    Бонусы для новых трейдеров до 30 000$!

  • BINARIUM
    BINARIUM

    Огромный раздел по обучению. Бесплатные прогнозы и стратегии!

Нечисловые статистические данные — это категоризованные данные, вектора разнотипных признаков, бинарные отношения, множества, нечеткие множества и др. Их нельзя складывать и умножать на коэффициенты. Поэтому не имеет смысла говорить о суммах нечисловых статистических данных. Они являются элементами нечисловых математических пространств (множеств). Математический аппарат анализа нечисловых статистических данных основан на использовании расстояний между элементами (а также мер близости, показателей различия) в таких пространствах. С помощью расстояний определяются эмпирические и теоретические средние, доказываются законы больших чисел, строятся непараметрические оценки плотности распределения вероятностей, решаются задачи диагностики и кластерного анализа, и т. д. (см. [2]).

В прикладных исследованиях используют статистические данные различных видов. Это связано, в частности, со способами их получения. Например, если испытания некоторых технических устройств продолжаются до определенного момента времени, то получаем т. н. цензурированные данные, состоящие из набора чисел — продолжительности работы ряда устройств до отказа, и информации о том, что остальные устройства продолжали работать в момент окончания испытания. Цензурированные данные часто используются при оценке и контроле надежности технических устройств.

Обычно отдельно рассматривают статистические методы анализа данных первых трех типов. Это ограничение вызвано тем отмеченным выше обстоятельством, что математический аппарат для анализа данных нечисловой природы — существенно иной, чем для данных в виде чисел, векторов и функций.

Вероятностно-статистическое моделирование

При применении статистических методов в конкретных областях знаний и отраслях народного хозяйства получаем научно-практические дисциплины типа «статистические методы в промышленности», «статистические методы в медицине» и др. С этой точки зрения эконометрика — это «статистические методы в экономике». Эти дисциплины группы б) обычно опираются на вероятностно-статистические модели, построенные в соответствии с особенностями области применения. Весьма поучительно сопоставить вероятностно-статистические модели, применяемые в различных областях, обнаружить их близость и вместе с тем констатировать некоторые различия. Так, видна близость постановок задач и применяемых для их решения статистических методов в таких областях, как научные медицинские исследования, конкретные социологические исследования и маркетинговые исследования, или, короче, в медицине, социологии и маркетинге. Они часто объединяются вместе под названием «выборочные исследования».

Отличие выборочных исследований от экспертных проявляется, прежде всего, в числе обследованных объектов или субъектов — в выборочных исследованиях речь обычно идет о сотнях, а в экспертных — о десятках. Зато технологии экспертных исследований гораздо изощреннее. Еще более выражена специфика в демографических или логистических моделях, при обработке нарративной (текстовой, летописной) информации или при изучении взаимовлияния факторов.

Вопросы надежности и безопасности технических устройств и технологий, теории массового обслуживания подробно рассмотрены, в большом количестве научных работ.

Статистический анализ конкретных данных

Применение статистических методов и моделей для статистического анализа конкретных данных тесно привязано к проблемам соответствующей области. Результаты третьего из выделенных видов научной и прикладной деятельности находятся на стыке дисциплин. Их можно рассматривать как примеры практического применения статистических методов. Но не меньше оснований относить их к соответствующей области деятельности человека.

Например, результаты опроса потребителей растворимого кофе естественно отнести к маркетингу (что и делают, читая лекции по маркетинговым исследованиям). Исследование динамики роста цен с помощью индексов инфляции, рассчитанных по независимо собранной информации, представляет интерес прежде всего с точки зрения экономики и управления народным хозяйством (как на макроуровне, так и на уровне отдельных организаций).

Перспективы развития

Теория статистических методов нацелена на решение реальных задач. Поэтому в ней постоянно возникают новые постановки математических задач анализа статистических данных, развиваются и обосновываются новые методы. Обоснование часто проводится математическими средствами, то есть путем доказательства теорем. Большую роль играет методологическая составляющая — как именно ставить задачи, какие предположения принять с целью дальнейшего математического изучения. Велика роль современных информационных технологий, в частности, компьютерного эксперимента.

Актуальной является задача анализа истории статистических методов с целью выявления тенденций развития и применения их для прогнозирования.

Литература

2. Нейлор Т. Машинные имитационные эксперименты с моделями экономических систем. — М.: Мир, 1975. — 500 с.

3. Крамер Г. Математические методы статистики. — М.: Мир, 1948 (1-е изд.), 1975 (2-е изд.). — 648 с.

4. Большев Л. Н., Смирнов Н. В. Таблицы математической статистики. — М.: Наука, 1965 (1-е изд.), 1968 (2-е изд.), 1983 (3-е изд.).

5. Смирнов Н. В., Дунин-Барковский И. В. Курс теории вероятностей и математической статистики для технических приложений. Изд. 3-е, стереотипное. — М.: Наука, 1969. — 512 с.

6. Норман Дрейпер, Гарри Смит Прикладной регрессионный анализ. Множественная регрессия = Applied Regression Analysis. — 3-е изд. — М.: «Диалектика», 2007. — С. 912. — ISBN 0-471-17082-8

Смотри также

Wikimedia Foundation . 2020 .

Смотреть что такое «Статистические методы» в других словарях:

СТАТИСТИЧЕСКИЕ МЕТОДЫ — СТАТИСТИЧЕСКИЕ МЕТОДЫ научные методы описания и изучения массовых явлений, допускающих количественное (численное) выражение. Слово “статистика” (от игал. stato государство) имеет общий корень со словом “государство”. Первоначально оно… … Философская энциклопедия

СТАТИСТИЧЕСКИЕ МЕТОДЫ – — научные методы описания и изучения массовых явлений, допускающих количественное (численное) выражение. Слово «статистика» (от итал. stato – государство) имеет общий корень со словом «государство». Первоначально оно относилось к науке управления и … Философская энциклопедия

Статистические методы — (в экологии и биоценологии) методы вариационной статистики, позволяющие исследовать целое (напр., фитоценоз, популяцию, продуктивность) по его частным совокупностям (напр., по данным, полученным на учетных площадках) и оценить степень точности… … Экологический словарь

Это очень важно:  Канал изменения цен (PCU)

статистические методы — (в психологии) (от лат. status состояние) нек рые методы прикладной математической статистики, используемые в психологии в основном для обработки экспериментальных результатов. Основная цель применения С. м. повышение обоснованности выводов в… … Большая психологическая энциклопедия

Статистические методы — 20.2. Статистические методы Конкретные статистические методы, используемые для организации, регулирования и проверки деятельности, включают, но не ограничиваются следующими: а) планированием экспериментов и факторный анализ; b) анализ дисперсии и … Словарь-справочник терминов нормативно-технической документации

СТАТИСТИЧЕСКИЕ МЕТОДЫ — методы исследования количеств. стороны массовых обществ. явлений и процессов. С. м. дают возможность в цифровом выражении характеризовать происходящие изменения в обществ. процессах, изучать разл. формы социально экономич. закономерностей, смену… … Сельско-хозяйственный энциклопедический словарь

СТАТИСТИЧЕСКИЕ МЕТОДЫ — некоторые методы прикладной математической статистики, используемые для обработки экспериментальных результатов. Ряд статистических методов был разработан специально для проверки качества психологических тестов, для применения в профессиональном… … Профессиональное образование. Словарь

СТАТИСТИЧЕСКИЕ МЕТОДЫ — (в инженерной психологии) (от лат. status состояние) некоторые методы прикладной статистики, используемые в инженерной психологии для обработки экспериментальных результатов. Основная цель применения С. м. повышение обоснованности выводов в… … Энциклопедический словарь по психологии и педагогике

Статистические методы анализа — группа методов и способов сбора и обработки данных, используемых для описания и анализа информации. По английски: Statistical methods of analysis См. также: Статистические методы анализа Методы анализа Статистические данные Финансовый словарь… … Финансовый словарь

СТАТИСТИЧЕСКИЕ МЕТОДЫ В ДЕМОГРАФИИ — СТАТИСТИЧЕСКИЕ МЕТОДЫ В ДЕМОГРАФИИ, совокупность основанных на принципах статистики приёмов наблюдения, описания и количеств. анализа демографич. процессов и явлений. Исторически нас. было одним из первых объектов статистич. учёта, а процессы… … Демографический энциклопедический словарь

Статистические методы

Эти методы относятся к количественным. Они представляют собой совокупность количественных методов сбора, обработки и анализа массовых исходных данных и широко применяются в социально-экономических, политических науках. Они оперируют большим количеством исходной информации, что и обусловливает необходимость применения математико-статистических методов ее обработки. Что же касается географии населения, то ее изучение целиком и полностью основывается на использовании статистических материалов. Демографическая статистика представляет собой самостоятельную обширную область исследований.

Стаж применения статистических методов в науке уже довольно велик. Еще в XVIII в. в Германии сформировалась школа так называемой камеральной статистики, основная задача которой заключалась в сборе и систематизации справочной информации для нужд управления государством и подготовки чиновников.

В наши дни в зависимости от цели исследования и характера изучаемых объектов применяются как методы социально-экономической статистики, так и методы математической статистики.

Социально-экономическая статистика применяется, прежде всего, при изучении различного рода социальных, экономических и других явлений и процессов, в том числе и в территориальном, региональном разрезе.

Методы математической статистики позволяют оценивать надежность и точность выводов, сделанных на основе ограниченного статистического материала.

Все математико-статистические методы используются для решения следующих задач:

1) количественных параметров изучаемых явлений и процессов;

2) анализа природных и социально-экономических факторов территориальной дифференциации хозяйства и населения;

3) выявления статистических взаимосвязей между социально-экономическими системами;

4) изучения динамики развития территориальных систем на разных этапах их развития;

5) разработки обобщающих (интегральных) показателей функционирования геосистем;

6) разработки методов автоматизации типологии и районирования как основы для прогнозирования развития территориальных систем населения и хозяйства;

7) выявления пространственно-временных закономерностей;

8) научного обоснования устойчивого развития геосистем и использования результатов в управлении народным хозяйством.

При характеристике регионов наиболее распространен метод определения средних величин. Например, определение средней плотности населения (Р – численность населения, S – площадь), транспортной сети и т.д.

Пользование этими величинами позволяет точнее охарактеризовать специфику региона, сделать вывод о насыщенности территории теми или иными объектами. Средние величины рассчитываются при размещении и территориальной организации производства, планировке населенных мест, административно-территориальном устройстве и т.д.

Различают несколько видов средних величин: среднюю арифметическую, среднюю гармоническую, среднюю геометрическую, среднюю квадратическую и т.д.

Регионоведение, как известно, ориентировано, прежде всего, на выявление специфики, различий между территориями. Установление региональных различий осуществляется путем сопоставления природных предпосылок (природно-ресурсного потенциала) и социально-экономических факторов развития. Далеко не всегда можно сравнивать регионы по абсолютным показателям. Например, обеспеченность региона транспортом нельзя оценивать только по протяженности дорог, т.к. в данном случае важное значение имеют технико-экономические характеристики транспортных средств, влияющие на пропускную способность транспортной системы.

Количественные оценки влияния того или иного фактора на формирование и развитие регионального объекта осуществляется при помощи различных методов статистического анализа: дисперсного, корреляционного, регрессионного, корреляционно-регрессионного, ковариационного.

Статистический анализ – это собирательное понятие для ряда математических приемов обработки количественной информации, с помощью которых выявляются основные тенденции распределения показателей и степень корреляции между отдельными показателями.

Дисперсионный анализ используется для выявления влияния одного (однофакторный дисперсный анализ) или нескольких фактор-ных признаков (многофакторный анализ) на результативный признак при небольшом количестве наблюдений.

Корреляционный анализ применяется для выяснения формы и степени взаимосвязи между признаками изучаемого объекта.

Регрессионный анализ необходим для определения степени раздельного и совместного влияния факторов на результирующий признак и количественные оценки этого влияния на основе различных критериев.

Суть корреляционно-регрессионного анализа состоит в том, что из множества факторов выделяют генерирующий, а влияние второстепенных факторов искусственно затушевывается, рассматривается как случайное явление. Взаимосвязь между фактором и объектом прослеживается в виде функциональной зависимости.

Ковариационный анализ включает элементы дисперсионного и регрессионного анализа. Он используется для изучения линейной связи двух или более переменных по отдельным группам данных и оценке значимости различий между линиями регрессий внутри этих групп.

Статистические методы имеют как самостоятельное, так и сопряженное значение. Практически их используют во всех видах региональных прогнозно-аналитических исследований – социально-экономических, политических и т.д.

Моделирование

Это исследование определенных объектов путем воспроизведения их характеристик на другом объекте – модели. Последняя представляет собой аналог того или иного фрагмента действительности (вещного или мыслительного) – оригинала модели. Следовательно, при моделировании изучаемый объект (явление, процесс) заменяется другой вспомогательной или искусственной системой. Закономерности и тенденции, выявленные в процессе моделирования, затем распространяются на реальную действительность.

Существуют различные подходы к классификации и типологии моделей.

По форме представления информации модели делятся на материальные и идеальные.

К материальным относятся пространственно-подобные модели (макеты, муляжи и пр.), физически подобные модели, обладающие различными видами подобия с оригиналом (модели самолетов, судов и пр.) и математически подобные модели (аналоговые и цифровые машины).

Мысленные (идеальные) модели подразделяются на образные (зарисовки, фотографии и пр.), знаковые или символические (математические, кибернетические) и смешанные образно-знаковые модели (карты, чертежи, графики, блок-диаграммы и пр.). Различают модели дескриптивные и нормативные. Первые объясняют наблюдаемые факты или дают вероятный прогноз, вторые предполагают целенаправленную деятельность.

В зависимости от того, включают ли математико-географические модели пространственные факторы и условия или не включают, различают модели пространственные (континуальные) и точечные (дискретные).

Наиболее универсальными принципами моделирования являются подобие (аналогия), системность, выделение в изучаемом объекте главного, наиболее существенного, постоянное соотнесение модели с конкретным объектом.

С моделью можно экспериментировать, изучая различные варианты, пути воздействия. Это значит, что можно составлять много моделей одного и того же объекта.

Процесс моделирования включает в себя три элемента:

a) субъект (исследователь);

b) объект исследования;

c) модель, опосредующую отношения познающего субъекта и познаваемого объекта.

Этап построения модели предполагает наличие некоторых знаний об объекте-оригинале. Познавательные возможности модели обусловливаются тем, что модель отражает какие-либо существенные черты объекта-оригинала. Считается, что модель утрачивает свой смысл как в случае тождества с оригиналом, так и в случае чрезмерного во всех существенных отношениях отличия от оригинала.

Модели выполняют разнообразные функции:

· психологическую (возможность изучения тех объектов и явлений, которые трудно исследовать иными способами);

· собирательную (определение необходимой информации, ее сбор и систематизация);

· логическую (выявление и объяснение механизма развития конкретного явления);

· систематизирующую (рассмотрение действительности как совокупности взаимосвязанных систем);

o конструктивную (создание теорий и познание законов);

o познавательную (содействие в распространении знаний).

В настоящее время, пожалуй, нет такой области научного знания, в которой не применялся бы метод моделирования.

Моделирование территориальных систем, а регионы, безусловно, относятся к таковым, – сопряжено со многими сложностями. К последним относятся динамичность пространственных, географичес-ких процессов, изменчивость их параметров и структурных отношений. Вследствие этого они должны постоянно находится под наблюдением, которое призвано обеспечивать устойчивый поток обновляемых данных. Применение математического моделирования заострило проблему измерений и количественных сопоставлений различных аспектов и явлений социально-экономического развития, достоверности и полноты получаемых данных, их защиты от намеренных и технических искажений.

В соответствии с исследуемыми территориальными процессами и содержательной проблематикой можно выделить модели народного хозяйства в целом и его подсистем, отраслей, регионов, комплексы моделей производства, потребления, формирования и распределения доходов, трудовых ресурсов и т.д.

Большой интерес для анализа населения и хозяйства представляют диффузные модели. Первым ученым, разработавшим модель пространственной диффузии нововведений был шведский ученый Хагерстранд.

Нововведения возникают в «полюсах роста» (концепция «полюсов роста», теория «центральных мест», с которой она связана генетически, родились на Западе в 1930–1950-х гг. и в разных вариантах были положены в основу многих планов и программ региональной политики зарубежных стран) и в центрах развития, а из них передаются в окружающее их экономическое пространство. Обычно такими полюсами и центрами являются крупные города, где концентрируются квалифицированные научно-исследовательские структуры, высшие учебные заведения.

Хагерстранд в 50-х–60-х гг. XX в. исследовал восприятие различных агротехнических нововведений в Центральной Швеции и показал как они распространяются по территории. Он выделил четыре стадии диффузии: первоначальную, которая характеризуется резким контрастом между источником нововведений и периферийными районами, вторую, когда образуются новые быстро развивающиеся центры в отдаленных районах, стадию компенсации, на которой происходит одинаковое распространение нововведений во всех местах, и стадию насыщения, характеризующуюся медленным подъемом до максимума.

Это очень важно:  Binomo снижает минимальный депозит

Одним из наиболее перспективных методов моделирования территориальных систем является имитационное моделирование. В основе этого метода теория вычислительных систем, статистика, теория вероятности, математика. Под имитационной моделью понимается модель, которая воспроизводит процесс функционирования систем в пространстве в определенный фиксированный момент времени путем отображения элементарных явлений и процессов с сохранением их логической структуры и последовательности. Это позволяет, используя исходные данные о структуре и главных свойствах территориальных систем, получать сведения о взаимосвязях между их компонентами и выявлять механизм формирования их устойчивого развития.

С 50-х–60-х гг. XX в. моделирование стало широко и активно применяться в политологии.

Проникает он и в науку о международных отношениях. Российским примером может быть работа М.А. Хрусталева «Системное моделирование международных отношений».

Особенно велика роль моделирования в изучении демографических процессов, ибо воспроизводство населения – это многосложный процесс. В демографии практически невозможен эксперимент, а исторические аналогии как средство исследования тоже чаще всего неприменимы.

Многие демографические показатели, используемые в практике демографического анализа, рассчитываются, исходя из демографических моделей. Речь идет о таких показателях, как средняя продолжительность жизни при рождении, нетто- и брутто-коэф-фициенты воспроизводства и т.д.

Демографические модели важны для практических расчетов. К примеру, модель передвижки по возрастам является основой демографического прогноза.

Сегодня в демографии широко используются математические модели населения, с помощью которых на основе фрагментарных и неполных данных, являющихся результатом непосредственного наблюдения, можно получить достаточно полное и достоверное представление о состоянии воспроизводства населения. Причем с помощью математических моделей можно получить более достоверные данные, чем с помощью статистического учета.

Преимущества метода моделирования очевидны:

1. он дает ключ к познанию многих объектов, которые не поддаются непосредственному измерению;

2. моделирование облегчает и упрощает исследование, делает его более наглядным;

1. с моделями можно экспериментировать.

Но у этого метода есть и слабые стороны. Так, в моделировании региональных систем должна находить отражение вся сложность взаимосвязанных процессов и явлений, протекающих в пространстве и времени. Вместе с тем модель должна быть максимально пригодна для практического использования, должна быть понятна тем, кто принимает решение, исходя из тех заключений, выводов, рекомендаций, прогнозов, которые делаются в результате изучения. Поиск оптимального варианта всегда приводит к разумной абстракции, к отвлечению от каких-то сторон реальных явлений и процессов. Но упрощение реальных ситуаций в сложных региональных системах таит в себе опасность получения неверных результатов. Следовательно, существует предел упрощения модели. Кроме того, всегда остаются проблемы, которые не поддаются формализации, и в этом случае математическое моделирование малоэффективно.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 10007 — | 7789 — или читать все.

188.64.175.44 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Статистические методы

Статисти́ческие ме́тоды — методы анализа статистических данных. Выделяют методы прикладной статистики, которые могут применяться во всех областях научных исследований и любых отраслях народного хозяйства, и другие статистические методы, применимость которых ограничена той или иной сферой. Имеются в виду такие методы, как статистический приемочный контроль, статистическое регулирование технологических процессов, надежность и испытания, планирование экспериментов.

Статистические методы анализа данных как область научно-практической деятельности

Статистические методы анализа данных применяются практически во всех областях деятельности человека. Их используют всегда, когда необходимо получить и обосновать какие-либо суждения о группе (объектов или субъектов) с некоторой внутренней неоднородностью.

Целесообразно выделить три вида научной и прикладной деятельности в области статистических методов анализа данных (по степени специфичности методов, сопряженной с погруженностью в конкретные проблемы):

а) разработка и исследование методов общего назначения, без учета специфики области применения;

б) разработка и исследование статистических моделей реальных явлений и процессов в соответствии с потребностями той или иной области деятельности;

в) применение статистических методов и моделей для статистического анализа конкретных данных.

Кратко рассмотрим три только что выделенческих методов и моделей, предназначенных для определенной области применения, может быть весьма сложным и математизированным (см., например, монографию [1]), с другой — результаты представляют не всеобщий интерес, а лишь для некоторой группы специалистов. Можно сказать, что работы вида б) нацелены на решение типовых задач конкретной области применения.

Прикладная статистика

я область знаний, чем математическая статистика. Это очень четко проявляется в процессе обучения. Курс математической статистики состоит в основном из доказательств теорем, в то время как в курсах статистических методов основное — методология анализа данных и алгоритмы расчетов, а теоремы приводятся для обоснования этих алгоритмов, доказательства же, как правило, опускаются (их можно найти в научной литературе). Так построены и учебники [2] и [4].

Прикладная статистика – одна из статистических наук, она не относится к математике. Внутренняя структура статистики как науки была выявлена и обоснована при создании в 1990 г. Всесоюзной статистической ассоциации (см., например, статью [3]). Прикладная статистика — методическая дисциплина, являющаяся центром, идейным ядром статистики. Внутри прикладной статистики выделяют задачи описания данных, оценивания и проверки гипотез.

Описание вида данных и, при необходимости, механизма их порождения – начало любого статистического исследования. Отметим, что для описания данных применяют как детерминированные, так и вероятностные методы. С помощью детерминированных методов можно проанализировать только те данные, которые имеются в распоряжении исследователя. Например, с их помощью получены таблицы, рассчитанные органами официальной государственной статистики на основе представленных предприятиями и организациями статистических отчетов. Перенести полученные результаты на более широкую совокупность, использовать их для предсказания и управления можно лишь на основе вероятностно-статистического моделирования. Поэтому в математическую статистику часто включают лишь методы, опирающиеся на теорию вероятностей, оставляя детерминированные методы экономической учебной дисциплине «Общая теория статистики».

Мы не считаем возможным противопоставлять детерминированные и вероятностно-статистические методы. Мы рассматриваем их как последовательные этапы статистического анализа. На первом этапе необходимо проанализировать имеющие данные, представить их в удобном для восприятия виде с помощью таблиц и диаграмм. Затем статистические данные целесообразно проанализировать на основе тех или иных вероятностно-статистических моделей. Отметим, что возможность более глубокого проникновения в суть реального явления или процесса обеспечивается разработкой адекватной математической модели.

В простейшей ситуации статистические данные – это значения некоторого признака, свойственного изучаемым объектам. Значения могут быть количественными или представлять собой указание на категорию, к которой можно отнести объект. Во втором случае говорят о качественном признаке.

При измерении по нескольким количественным или качественным признакам в качестве статистических данных об объекте получаем вектор. Его можно рассматривать как новый вид данных. В таком случае выборка состоит из набора векторов. Есть часть координат – числа, а часть – качественные (категоризованные) данные, то говорим о векторе разнотипных данных.

Одним элементом выборки, т.е. одним измерением, может быть и функция в целом. Например, описывающая динамику показателя, т.е. его изменение во времени, — электрокардиограмма больного или амплитуда биений вала двигателя. Или временной ряд, описывающий динамику показателей определенной фирмы. Тогда выборка состоит из набора функций.

Элементами выборки могут быть и иные математические объекты. Например, бинарные отношения. Так, при опросах экспертов часто используют упорядочения (ранжировки) объектов экспертизы – образцов продукции, инвестиционных проектов, вариантов управленческих решений. В зависимости от регламента экспертного исследования элементами выборки могут быть различные виды бинарных отношений (упорядочения, разбиения, толерантности), множества, нечеткие множества и т.д.

Итак, математическая природа элементов выборки в различных задачах прикладной статистики может быть самой разной. Однако можно выделить два класса статистических данных – числовые и нечисловые. Соответственно прикладная статистика разбивается на две части – числовую статистику и нечисловую статистику.

Числовые статистические данные – это числа, вектора, функции. Их можно складывать, умножать на коэффициенты. Поэтому в числовой статистике большое значение имеют разнообразные суммы. Математический аппарат анализа сумм случайных элементов выборки – это (классические) законы больших чисел и центральные предельные теоремы.

Нечисловые статистические данные – это категоризованные данные, вектора разнотипных признаков, бинарные отношения, множества, нечеткие множества и др. Их нельзя складывать и умножать на коэффициенты. Поэтому не имеет смысла говорить о суммах нечисловых статистических данных. Они являются элементами нечисловых математических пространств (множеств). Математический аппарат анализа нечисловых статистических данных основан на использовании расстояний между элементами (а также мер близости, показателей различия) в таких пространствах. С помощью расстояний определяются эмпирические и теоретические средние, доказываются законы больших чисел, строятся непараметрические оценки плотности распределения вероятностей, решаются задачи диагностики и кластерного анализа, и т.д. (см. [2]).

В прикладных исследованиях используют статистические данные различных видов. Это связано, в частности, со способами их получения. Например, если испытания некоторых технических устройств продолжаются до определенного момента времени, то получаем т.н. цензурированные данные, состоящие из набора чисел – продолжительности работы ряда устройств до отказа, и информации о том, что остальные устройства продолжали работать в момент окончания испытания. Цензурированные данные часто используются при оценке и контроле надежности технических устройств.

Это очень важно:  Стив Нисон - скачать бесплатно книгу Японские свечи графический анализ финансовых рынков

Обычно отдельно рассматривают статистические методы анализа данных первых трех типов. Это ограничение вызвано тем отмеченным выше обстоятельством, что математический аппарат для анализа данных нечисловой природы – существенно иной, чем для данных в виде чисел, векторов и функций. Статистика нечисловых данных рассмотрена в [2, 4].

Вероятностно-статистическое моделирование

При применении статистических методов в конкретных областях знаний и отраслях народного хозяйства получаем научно-практические дисциплины типа «статистические методы в промышленности», «статистические методы в медицине» и др. С этой точки зрения эконометрика — это «статистические методы в экономике» [4]. Эти дисциплины группы б) обычно опираются на вероятностно-статистические модели, построенные в соответствии с особенностями области применения. Весьма поучительно сопоставить вероятностно-статистические модели, применяемые в различных областях, обнаружить их близость и вместе с тем констатировать некоторые различия. Так, видна близость постановок задач и применяемых для их решения статистических методов в таких областях, как научные медицинские исследования, конкретные социологические исследования и маркетинговые исследования, или, короче, в медицине, социологии и маркетинге. Они часто объединяются вместе под названием «выборочные исследования».

Отличие выборочных исследований от экспертных проявляется, прежде всего, в числе обследованных объектов или субъектов – в выборочных исследованиях речь обычно идет о сотнях, а в экспертных – о десятках. Зато технологии экспертных исследований гораздо изощреннее. Еще более выражена специфика в демографических или логистических моделях, при обработке нарративной (текстовой, летописной) информации или при изучении взаимовлияния факторов. Ряд иных полезных моделей рассмотрен в [5-7].

Вопросы надежности и безопасности технических устройств и технологий, теории массового обслуживания подробно рассмотрены, например, в ставших классическими монографиях [8-10].

Статистический анализ конкретных данных

Применение статистических методов и моделей для статистического анализа конкретных данных тесно привязано к проблемам соответствующей области. Результаты третьего из выделенных видов научной и прикладной деятельности находятся на стыке дисциплин. Их можно рассматривать как примеры практического применения статистических методов. Но не меньше оснований относить их к соответствующей области деятельности человека.

Например, результаты опроса потребителей растворимого кофе естественно отнести к маркетингу (что и делают, читая лекции по маркетинговым исследованиям). Исследование динамики роста цен с помощью индексов инфляции, рассчитанных по независимо собранной информации, представляет интерес прежде всего с точки зрения экономики и управления народным хозяйством (как на макроуровне, так и на уровне отдельных организаций).

Заказчики прикладных исследований получают отчеты, в которых проблемы соответствующих областей деятельности рассмотрены подробно. Примером такого отчета является монография [5], посвященная подходам к проблеме вероятностно-статистического моделирования процессов налогообложения.

О высоких статистических технологиях

Термин «высокие технологии» популярен в современной научно-технической литературе. Он используется для обозначения наиболее передовых технологий, опирающихся на последние достижения научно-технического прогресса. Есть такие технологии и среди технологий статистического анализа данных — как в любой интенсивно развивающейся научно-практической области. Они подробно обсуждаются в настоящем учебнике. Их роль подчеркнута тем, что термин «высокие статистические технологии» вынесен в название учебника.

Обсудим этот пока не вполне привычный термин (он был введен в статье [11], опубликованной в 2003 г.). Каждое из трех слов ны в соответствии с нею (а не являются т.н. эвристическими).

Термин «статистические» привычен. Статистические данные – это результаты измерений, наблюдений, испытаний, анализов, опытов, а «статистические технологии» — это технологии анализа статистических данных.

Наконец, сравнительно редко используемый применительно к статистике термин «технологии». Статистический анализ данных, как правило, включает в себя целый ряд процедур и алгоритмов, выполняемых последовательно, параллельно или по более сложной схеме. В частности, можно выделить следующие этапы:

— планирование статистического исследования;

— организация сбора необходимых статистических данных по оптимальной или рациональной программе (планирование выборки, создание организационной структуры и подбор команды статистиков, подготовка кадров, которые будут заниматься сбором данных, а также контролеров данных и т.п.);

— непосредственный сбор данных и их фиксация на тех или иных носителях (с контролем качества сбора и отбраковкой ошибочных данных по соображениям предметной области);

— первичное описание данных (расчет различных выборочных характеристик, функций распределения, непараметрических оцеей гипотезы),

— более углубленное изучение, т.е. применение различных алгоритмов многомерного статистического анализа, алгоритмов диагностики и построения классификации, статистики нечисловых и интервальных данных, анализа временных рядов и др.;

— проверка устойчивости полученных оценок и выводов относительно допустимых отклонений исходных данных и предпосылок используемых вероятностно-статистических моделей, в частности, изучение свойств оценок методом размножения выборок;

— применение полученных статистических результатов в прикладных целях (например, для диагностики конкретных материалов, построения прогнозов, выбора инвестиционного проекта из предложенных вариантов, нахождения оптимальных режима осуществления технологического процесса, подведения итогов испытаний образцов технических устройств и др.),

— составление итоговых отчетото информационный технологический процесс, другими словами, та или иная информационная технология. Статистическая информация подвергается разнообразным операциям (последовательно, параллельно или по более сложным схемам). В настоящее время об автоматизации всего процесса статистического анализа данных говорить было бы несерьезно, поскольку имеется слишком много нерешенных проблем, вызывающих дискуссии среди статистиков.

Программное обеспечение статистических методов

В настоящее время статистическая обработка данных проводится, как правило, с помощью соответствующих программных продуктов. Мы не сочли целесообразным приводить ссылки на те или иные пакеты программ по нескольким причинам.

Во-первых, популяции программных продуктов быстро обновляются. Пакеты программ, разработанные 10-15 лет назад, безнадежно устарели. Новые версии, как правило, весьма отличаются от предшественников десятилетней давности. В то же время лучшие книги 40-60-х годов по статистическим методам остаются актуальными и сейчас. Например, монографии [12-14].

Во-вторых, каждый программный продукт обладает определенными достоинствами и недостатками. Как показывает опыт [15], при сравнении нескольких пакетов программ крайне трудно сделать обоснованный вывод о том, какой из них следует предпочесть.

Необходимо отметить, что между математической и прикладной статистикой имеется и с течением времени углубляется разрыв. Он проявляется, в частности, в том, что большинство методов, включенных в статистические и SPSS или в более новую систему Statistica), даже не упоминается в учебниках по математической стистике. В результате разрыва специалист по математической статистике оказывается зачастую беспомощным при обработке реальных данных, а пакеты программ применяют (что еще хуже — и разрабатывают) лица, не имеющие необходимой теоретической подготовки. Естественно, что они допускают разнообразные ошибки. Типовые ошибки при применении критериев согласия Колмогорова и омега-квадрат давно проаналваны в литературе (например, в статье 1985 г. [16] и учебнике [2]). Об удручающих результатах анализа государственных стандартов по статистическим методам управления качеством рассказ

По оценкам экспертов, распространенные статистические пакеты программ обычно соответствуют уровню научных исследований 60-70-х годов. В них нет большинства статистических методов, включенных в современные учебники [2, 4]. Впрочем, как показывает практика преподавания, студенты и слушатели легко реализуют новые статистические методы с помощью подручных вычислительных средств.

О перспективах развития статистических методов

Теория статистических методов нацелена на решение реальных задач. Поэтому в ней постоянно возникают новые постановки математических задач анализа статистических данных, развиваются и обосновываются новые методы. Обоснование часто проводится математическими средствами, т.е. путем доказательства теорем. Большую роль играет методологическая составляющая — как именно ставить задачи, какие предположения принять с целью дальнейшего математического изучения. Велика роль современных информационных технологий, в частности, компьютерного эксперимента.

Отметим, что актуальной является задача анализа истории статистических методов с целью выявления тенденций развития и применения их для прогнозирования.

Ситуация с внедрением современных статистических методов на предприятиях и в организациях различных отраслей народного хозяйства внушает оптимизм. На отечественных предприятиях продолжают развиваться структуры, нуждающиеся в статистических методах, — подразделения качества, надежности, управления персоналом, центральные заводские лаборатории и другие. Толчок к развитию в последние годы получили службы контроллинга, маркетинга и сбыта, логистики, сертификации, прогнозирования и планирования, инноваций и инвестиций, управления рисками, которым также полезны различные статистические методы, в частности, методы экспертных оценок. Включенные в учебник методы необходимы органам государственного и муниципального управления, организациям силовых ведомств, транспорта и связи, медицины, образования, агропромышленного комплекса, научным и п работникам всех областей деятельности.

Литература

1. Орлов А.И. Устойчивость в социально-экономических моделях. — М.: Наука, 1979. — 296 с.

3. Орлов А.И. О перестройке статистической науки и её применений. — Журнал «Вестник статистики». 1990. No.1. С.65 — 71.

6. Орлов А.И., Федосеев В.Н. Менеджмент в техносфере: Учебное пособие. – М.: Издательский центр «Академия», 2003. – 384 с.

8. Гнеденко Б.В., Беляев Ю.К., Соловьев А.Д. Математические методы в теории надежности. — М.: Наука, 1965. — 524 с.

9. Гнеденко Б.В., Коваленко И.Н. Введение в теорию массового обслуживания. — М.: Наука, 1966. — 301 с.

10. Нейлор Т. Машинные имитационные эксперименты с моделями экономических систем. – М.: Мир, 1975. — 500 с.

12. Крамер Г. Математические методы статистики. – М.: Мир, 1948 (1-е изд.), 1975 (2-е изд.). – 648 с.

13. Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. — М.: Наука, 1965 (1-е изд.), 1968 (2-е изд.), 1983 (3-е изд.).

14. Смирнов Н.В., Дунин-Барковский И.В. Курс теории вероятностей и математической статистики для технических приложений. Изд. 3-е, стереотипное. – М.: Наука, 1969. – 512 с.

15. Орлов А.И. Математическое обеспечение сертификации: сравнительный анализ диалоговых систем по статистическому контролю. – Журнал «Заводская лаборатория». 1996. Т.62. No.7. С.46-49.

16. Орлов А.И. Распространенная ошибка при использовании критериев Колмогорова и омега-квадрат. – Журнал «Заводская лаборатория».1985. Т.51. No.1. С.60-62.

Открыть счет и забрать бонусы:
  • FinMax
    FinMax

    Бонусы для новых трейдеров до 30 000$!

  • BINARIUM
    BINARIUM

    Огромный раздел по обучению. Бесплатные прогнозы и стратегии!

Понравилась статья? Поделиться с друзьями:
Бинарные опционы для начинающих от А до Я
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: