Коэффициент Шарпа — что это такое

Рейтинг лучших бинарных брокеров за 2020 год:
  • FinMax
    FinMax

    Бонусы для новых трейдеров до 30 000$!

  • BINARIUM
    BINARIUM

    Огромный раздел по обучению. Бесплатные прогнозы и стратегии!

Что такое коэффициент Шарпа и что он показывает? Формула расчёта и примеры

Приветствую всех читателей сайта webinvestor.pro! При подборе инструментов для инвестиционного портфеля инвесторы обычно в первую очередь обращают внимание на показатель доходности, что вполне логично. С другой стороны, существует проверенное практикой правило — чем выше доходность, тем выше инвестиционные риски.

В связи с этим возникает вопрос — как отличить действительно качественный прибыльный актив от актива, который приносит высокий доход просто за счёт увеличенных рисков? В этом может помочь коэффициент Шарпа, разработанный лауреатом Нобелевской премии по экономике Уильямом Шарпом.

Коэффициент Шарпа — что это и что показывает? Формула

Доходность и инвестиционные риски обладают положительной корреляцией, то есть они сильно взаимосвязаны. На практике это означает, что измерять их по отдельности не совсем корректно, это по сути ничего не скажет о качестве конкретного инвестиционного инструмента. Именно поэтому существует специальные показатели вроде коэффициента Шарпа, который показывает эффективность инвестиционного актива как соотношение доходности (премии за риск) и рисков (стандартного отклонения).

Пожалуй, это один из самых популярных показателей, которым пользуются финансовые и инвестиционные аналитики. Формула расчёта коэффициента Шарпа довольно простая:

  • S(X) — коэффициент Шарпа.
  • X — выбранный актив.
  • R(X) — доходность инвестиционного актива.
  • Rf— доходность безрискового актива, с которым сравнивается актив X.
  • E(R(X) — Rf) — математическое ожидание.
  • σ(X) — стандартное отклонение доходности актива X.

В числителе формулы выражение R(X) — Rf означает премию за риск — дополнительную доходность, которую получает инвестор, вкладывая деньги в рискованный, а не надежный безрисковый инвестиционный инструмент. Правда, на практике безрисковых активов не существует, поэтому в формуле приходится использовать наиболее приближенные к ним — казначейские облигации или долларовые депозиты в крупных банках.

При одинаковом временном периоде данных (по дням, неделям и т.д.) математическое ожидание превращается в среднее арифметическое, формула коэффициента Шарпа упрощается:

  • avgR (X) — среднеарифметическое значение доходности актива, для которого рассчитывается коэффициент;
  • avgRf— среднеарифметическое значение доходности безрискового актива.

Стандартное отклонение в знаменателе показывает волатильность (изменчивость) доходности инвестиционного актива. Это не совсем мера риска, так как учитываются колебания в обе стороны. Тем не менее, инвесторам намного комфортнее инвестировать в актив, который потихоньку растёт по 1-2% за период, чем в тот, который может с одинаковым шансом принести как +10%, так и -10%.

Сам по себе коэффициент Шарпа не показывает конкретной характеристики инвестиционного актива, так как соотношение доходность/СО — величина безразмерная. Исключение, когда он близок к нулю или отрицательный — это означает, что выбранный актив вообще не стоит рассматривать, он ничем не лучше безрискового варианта.

Удобнее всего использовать коэффициент Шарпа при сравнении двух или больше активов между собой — чем больше коэффициент, тем более эффективным в плане получения прибыли будет актив. При этом его доходность может быть ниже, чем у остальных — но она будет расти намного стабильнее.

Коэффициента Шарпа лучше всего работает на данных, которые нормально распределены. Поэтому он может давать слишком оптимистичные результаты на коротких временных промежутках и для активов, у которых наблюдается не-«нормальная» волатильность доходности — например у банковских депозитов она практически отсутствует, ставка меняется редко.

Анализ инвестиций с помощью коэффициента Шарпа

Брокеры ПАММ-счетов и сервисы копирования сделок обычно игнорируют коэффициент Шарпа. К счастью, есть сервис Investflow, который охватывает большинство вариантов инвестирования на рынке Форекс. Вам нужно просто найти нужный актив и посмотреть значение коэффициента Шарпа для него:

Коэффициент Шарпа для ПАММ-счёта Lucky Pound

Это высокое значение коэффициента, которое говорит о таких вещах:

  • ПАММ-счёт в среднем зарабатывает больше, чем теряет;
  • сравнивая с другими ПАММ-счетами, мы понимаем насколько он хорош;
  • высокий коэффициент Шарпа позволяет смело использовать реинвестиции.

А теперь для примера посмотрим на результаты еще одного интересного ПАММ-счёта — Surest Secure:

Народный рейтинг русских брокеров:
  • FinMax
    FinMax

    Бонусы для новых трейдеров до 30 000$!

  • BINARIUM
    BINARIUM

    Огромный раздел по обучению. Бесплатные прогнозы и стратегии!

Коэффициент Шарпа для ПАММ-счёта Surest Secure

Здесь уже 0.40! При том, что доходность двух ПАММ-счетов отличается незначительно, более высокое значение коэффициента Шарпа говорит о более низкой волатильности (следовательно, и рисках) Surest Secure.

Есть другой сервис, который специализируется на ПАММ-счетах компании Альпари — Pammin. Он тоже умеет рассчитывать коэффициент Шарпа (и не только):

Если что, это все тот же Surest Secure. Кстати, меня ставит в ступор такое различие в значениях коэффициента на Investflow и на Pammin — вроде бы простая формула, а результаты разные. Вероятно, владельцы сервисов понимают её несколько по-своему.

В общем, приходим к выводу, что если вы хотите использовать коэффициент Шарпа для анализа веб-инвестиций, то используйте только один сервис.

Это очень важно:  Жалобы и плохие отзывы о AlfaBroker.trade - развод от брокера

В программе IVE: Анализ ПАММ-счетов тоже используется коэффициент Шарпа:

Чтобы сравнить до конца, снова взял график Surest Secure. Как видите, в моей программе значение коэффициента Шарпа получилось намного ниже — всего 0.09. Для этого есть несколько причин:

  • в качестве доходности актива используется среднее значение дневной чистой доходности инвесторов ПАММ-счёта, комиссия управляющего съедает значительную часть прибыли и снижает значение коэффициента;
  • безрисковая доходность учитывается, по умолчанию 5% годовых — средняя доходность долларовых депозитов в крупных банках СНГ;
  • волатильность считается не по доходности на конец дня, а по минимальному значению общей доходности за день — чтобы учитывать все скрытые просадки, а это в свою очередь увеличивает значение стандартного отклонения и уменьшает значение коэффициента Шарпа.

Несмотря на то, что каждый инструмент считает коэффициент по-своему, судя по всему сравнивать ПАММ-счета можно любым — от использования разных вариантов формулы основной принцип не меняется. Так что выбирайте тот, что вам удобнее.

Коэффициент Шарпа также используется для оценки эффективности торговых советников и ручных торговых систем. Пожалуй, самый популярный сервис для мониторинга и анализа торговых счетов трейдеров рынка Форекс Myfxbook умеет считать нужный нам коэффициент:

Для Myfxbook, по моим наблюдениям, 0.25 — значение очень высокое, так что очевидно, методика расчёта отличается от описанных выше сервисов. Что с этим делать вы уже знаете.

Пример расчёта по формуле коэффициента Шарпа в Excel

Вполне возможна ситуация, когда необходимо проанализировать инвестиционный актив, для которого нигде нет заранее рассчитанного значения коэффициента Шарпа. Вы можете это сделать самостоятельно при помощи программы Microsoft Excel.

Я буду показывать на примере версии MS Excel 2020, установленной у меня, но по идее для других версий отличий нет.

Для примера рассчитаем коэффициент Шарпа для акций замечательной компании Disney. Первым делом скачаем информацию о цене по этой ссылке:

Получили такую таблицу:

Посчитаем коэффициент Шарпа по ценам закрытия биржевого дня, т.е. Close, столбец E. Используем упрощённую формулу:

avgR(X) — средняя доходность акций Disney за день. Доходность мы можем рассчитать начиная со второго дня, для этого используем формулу =(E3-E2)/E2, и протягиваем её на всю длину таблицы:

Находим среднее значение доходности по формуле =СРЗНАЧ(H3:H22):

Получили -0.01%, это средняя доходность акций Disney за один день. Теперь надо добавить в формулу безрисковую доходность Rf — допустим это 5% годовых. Переводим 5% за 365 дней в доходность за 1 день с помощью формулы: =0.05/365, получили avgRf = 0.014%.

Теперь осталось найти стандартное отклонение доходности. Это просто, используем формулу: =СТАНДОТКЛОН(H3:H22), получили 0.57%.

Все части формулы коэффициента Шарпа рассчитаны, осталось вычислить его: =(J2-K2)/L2, получили -0.04. Результат отрицательный, а значит рассматривать акции Disney для инвестирования не стоит. Однако, как я уже писал раньше, на коротких временных промежутках коэффициент Шарпа работает плохо, в идеале рассматриваемый период должен быть не меньше года .

Еще один пример расчёта коэффициента Шарпа для акций с подробными объяснениями вы найдете в этом видео:

Я не просто так решил рассказать вам подробнее о коэффициенте Шарпа — на мой взгляд, это отличный показатель качества инвестиционного актива, который учитывает и доходность и риски. У Форекс-трейдеров примерно для таких же целей используется показатель Прибыль-фактор — он показывает соотношение сумм результатов прибыльных и убыточных сделок.

А вот у инвесторов такого универсального показателя нет. Точнее, не было — я считаю его место вполне может занять коэффициент Шарпа. А как считаете вы? Пишите об этом в комментариях.

И не забывайте нажимать кнопки соцсетей, если вам понравилась статья:

Оценка торговой стратегии с помощью коэффициента Шарпа

Большинство инвесторов оценивают эффективность торговых стратегий на финансовых рынка по эквити. Если по результатам бэктеста кривая плавно растущая, без резких просадок — торговая стратегия эффективная. Есть и другие вспомогательные параметры: процент прибыльных сделок, максимальная просадка, и т.д. Но есть в такой оценке один изъян — она не достаточно учитывает торговые риски. Другими словами, иной раз стратегия с меньшей доходностью является более привлекательной за счет уменьшенного риска. Вот именно для оценки соотношения прибыльности и риска применяется коэффициент Шарпа, в этой статье поговорим о том, что это такое и как его использовать.

  1. Что такое коэффициент Шарпа
  2. Практический пример расчета эффективности стратегии
  3. Усовершенствованный коэффициент Шарпа

Что такое коэффициент Шарпа

Я веду этот блог уже более 6 лет. Все это время я регулярно публикую отчеты о результатах моих инвестиций. Сейчас публичный инвестпортфель составляет более 1 000 000 рублей.

Специально для читателей я разработал Курс ленивого инвестора, в котором пошагово показал, как наладить порядок в личных финансах и эффективно инвестировать свои сбережения в десятки активов. Рекомендую каждому читателю пройти, как минимум, первую неделю обучения (это бесплатно).

Чем выше прибыль при использовании торговой стратегии, тем выше риск. И в какой-то момент риск получить убыток перевешивает вероятность получения прибыли. Коэффициент Шарпа — это параметр, который показывает насколько доход от стратегии соотносится к потенциальному риску.

Это очень важно:  Фракталы (Fractals) Билла Вильямса

Расчет данного коэффициента может одинаково применяться как для оценки стратегии на форекс (ниже приведу пример), так и для оценки отдельно взятого инвестиционного портфеля (полезный коэффициент для тех, кто собирается стать инвестором ПИФов).

Формула расчета коэффициента Шарпа:

rp — доход за фиксированный период (эти данные можно найти в статистике, например, торговой платформы Метатрейдера 4), rf — безрисковый доход, σp — стандартное отклонение. На форексе стандартное отклонение определяется средней волатильностью валютной пары.

Параметр rf Коэффициента Шарпа на форексе отсутствует (принимается за 0), на фондовом рынке в качестве значения принимается доходность, например, казначейских краткосрочных векселей. Кстати, я немного не согласен с тем, что для Форекса этот параметр отсутствует. Безрисковый доход — это минимальный доход, который инвестор мог бы получить от инвестиции с практически нулевым риском, и исключение этого параметра искусственно завышает значение коэффициента Шарпа. Я бы советовал в качестве безрискового дохода брать, например, доходность по депозитам.

Отзывы о FIBO Group: офшорный форекс с сомнительной репутацией

Мои отзывы о FIBO Group

Какой должен быть коэффициент Шарпа:

  • «1 и выше» — оптимальное значение коэффициента, обозначающее хорошую стратегию или высокую результативность управления портфелем ценных бумаг;
  • «0-1» — нельзя сказать, что стратегия очень хорошая, поскольку завышены риски, но её применение возможно;
  • «0 и ниже» — на форексе стратегию лучше не использовать, при фондовом инвестировании целесообразнее выбрать другой портфель.

Практический пример расчета эффективности стратегии

Пример сравнения двух стратегий при торговле у брокера Амаркетс :

  • начальный депозит — 100 дол. США;
  • период торговли — 1 год;
  • доходность за год — 250% (250 дол. США);
  • волатильность валютной пары за год (разница между начальным и конечным значением котировок) — 125 пунктов.

Коэффициент Шарпа = 250/125 = 2,0.

  • начальный депозит — 500 дол. США;
  • период торговли — 1 год;
  • доходность — 60% (300 дол. США);
  • волатильность — 1345 пунктов.

Коэффициент Шарпа = 300/1345 = 0,22.

В первом случае при такой волатильности трейдер получил слишком большой доход. Следовательно, или нужно искать подвох, или трейдеру очень повезло. Во втором случае трейдер слишком рискует. Снова акцентирую внимание на том, что оптимальным считается значение «1» с минимальными от него отклонениями.

Если с валютным рынком все относительно просто, то с фондовым — сложнее из-за большого количества ценных бумаг и инвестиционных портфелей. У трейдера есть два варианта:

  • рассчитать коэффициент Шарпа в Exel. Для этого берем котировки нужных ценных бумаг, оцениваем вес их доли в портфеле ценных бумаг, рассчитываем доходность по каждой ценной бумаге (формула, например, для «Газпрома» из примера ниже — =LN (B7/B6). Следующий шаг — расчет доходности портфеля и его риска.

Как видно по результатам, коэффициент Шарпа отрицательный, значит портфель нерезультативен и доходность по безрисковому активу (в данном примере депозиты со ставкой 12%) оказалась выше.

  • посмотреть коэффициент Шарпа онлайн, например, на сайте Национальной Лиги Управляющих (nlu.ru).

ЦБ РФ аннулировал лицензии Форекс клуба, Телетрейда и Альпари

Почему Альпари, Форекс-клуб и Телетрейд потеряли лицензию ЦБ

Усовершенствованный коэффициент Шарпа

Выше речь шла о простом коэффициенте Шарпа, а любая упрощенная формула несовершенна. Потому существующая формула была усложнена с целью сделать расчет рисков еще более точным. Сразу предупрежу: её понимание требует знаний математической статистики и рекомендуется только в случае необходимости принятия стратегически важных решений в отношении оценки портфеля ценных бумаг (к форексу данная формула не применяется). Расчет риска в формуле основывается не только на стандартном отклонении, но и на видоизмененной мере риска, позволяющей сделать оценку будущих потерь с большей реалистичностью благодаря анализу характера распределения исторической прибыльности.

Формула усовершенствованного коэффициента Шарпа:

rp — усредненная прибыльность портфеля ценных бумаг, rf — усредненная прибыльность безрискового актива, σp — стандартное математическое отклонение прибыльности портфеля ценных бумаг, S — эксцесс распределения доходности, zc — куртозис распределения прибыльностей портфеля, К — квантиль распределения прибыли.

Всем, кому слова «куртозис» и «квантиль» ни о чем не говорят, «Добро пожаловать» в эконометрику и математическую статистику. Глубоко копать в рамках этой статьи не вижу смысла, т.к. большинству будет достаточно общей информации.

Заключение

Надеюсь, у меня получилось объяснить простым языком что это такое коэффициент Шарпа. В идеале рекомендую создать в Экселе собственную модель, построенную на основе коэффициента с учетом вашего личного риск-менеджмента. Если остались вопросы, пишите в комментариях.

Коэффициент Шарпа

Один известный фьючерсный трейдер сказал, что при одинаковом уровне дохода по итогам года у нескольких трейдеров, коэффициент Шарпа показывает, кто из них добился его за счёт своего мастерства (преимущества на рынке), а кто за счёт принятия слишком высоких рисков. Очевидно, что ставку следует делать на первых, на тех, кто добивается результатов, сохраняя при этом приемлемый уровень риска, исключительно за счёт своего трейдерского мастерства. Так как понятно, что высокие риски, рано или поздно, приводят к значительным убыткам (зачастую к полному сливу депозита).

Если в двух словах, то коэффициент Шарпа показывает какую прибыль получает трейдер на единицу риска

Для начала совсем немного истории. Впервые данный коэффициент увидел свет в 1966 году благодаря стараниям будущего нобелевского лауреата Уильяма Шарпа (свою Нобелевскую премию он получит через 44 года за разработку модели для оценки капитальных активов CAPM).

Это очень важно:  Точная стратегия торговли по Индикатору MACD - Описание

Формула коэффициента Шарпа

Расчёт данного коэффициента ведётся по следующей формуле:

R – доходность оцениваемого трейдера (портфеля);

Rf – доходность безрискового вложения (как правило, берётся доходность по государственным облигациям или по банковскому депозиту);

σ – стандартное отклонение доходности оцениваемого трейдера от доходности безрискового вложения.

Значения доходности берутся за тот период времени, на который рассчитывается искомый коэффициент. Как правило, рассматривают значение коэффициента Шарпа за год, но в отдельных случаях бывает целесообразно рассчитывать его квартальные, месячные и даже дневные значения.

Пример расчёта коэффициента Шарпа

Пусть вас не пугает приведённая выше формула, на самом деле всё очень просто. Давайте разберём расчёт на простом и понятном примере. Посчитаем коэффициент Шарпа по итогам работы трейдера за квартал. Дабы не усложнять пример множеством цифр, возьмём лишь три значения доходности трейдера, за каждый месяц торговли в целом:

Таким образом, доходность трейдера за квартал составила (15%+25%+5%)/3=15%. При этом доход по облигациям государственного займа всё это время составлял 10%.

Посчитаем стандартное отклонение доходности. Для этого вычтем из каждой месячной доходности трейдера, доходность по облигациям:

Далее возведём полученные значения в квадрат и вычислим среднее арифметическое (т.е. суммируем и поделим на общее их количество):

(5х5 + 15х15 + (-5)х(-5))/3 = 91,66

Ну и наконец, извлекаем из полученного значения квадратный корень и имеем в итоге искомое стандартное отклонение (его ещё называют среднеквадратичным отклонением):

Остаётся только вычесть из средней доходности трейдера за квартал (15%), значение доходности по безрисковому вложению (10%) и поделить полученный результат на стандартное отклонение:

Таким образом, искомый коэффициент Шарпа для рассматриваемого примера составляет 0,52.

Выводы

Давайте ещё раз взглянем на формулу коэффициента, приведённую в начале статьи. Она показывает, что величина коэффициента Шарпа прямо пропорциональна проценту доходности трейдера и обратно пропорциональна разбросу его результативности. То есть, другими словами, чем больше и стабильнее средний доход трейдера, тем выше значение искомого коэффициента. Обратите внимание, что если средний доход трейдера составит величину меньшую чем доходность по безрисковому вложению, то коэффициент получит отрицательное значение. В этом случае возникает вполне закономерный вопрос: если доходы трейдера меньше, чем доход, по тем же облигациям или по банковскому депозиту, то какой смысл ему вообще заниматься трейдингом? Не проще ли вложить деньги в облигации или в банк? Риск при этом однозначно будет меньшим, а доходность выше.

Анализируя вышеприведённую формулу можно также сделать вывод о том, что трейдер со средним показателем доходности, например в 15%, может быть более успешным, чем трейдер со средней доходностью в 25% за тот же период. Ведь коэффициент учитывает разброс этих самых значений доходности и если у первого трейдера этот разброс будет меньше (он торгует более стабильно), чем у второго, то и коэффициент, в итоге, может получиться выше. Рассмотрим вышесказанное на ещё одном простом примере:

1 месяц – 50% доходности

2 месяц – 0% доходности

3 месяц – 25% доходности

Средняя доходность за квартал: (50% + 0% + 25%)/3 = 25%

1 месяц – 20% доходности

2 месяц – 10% доходности

3 месяц – 15% доходности

Средняя доходность за квартал: (20% +10% + 15%)/3 = 15%

Разброс значений доходности относительно базовой ставки (примем её равной проценту по государственным облигациям – 10%), выраженный в виде среднеквадратичного отклонения будет таким:

Первый трейдер: √ ((40х40+(-10)х(-10)+15х15)/3)=25,33

Второй трейдер: √ ((10х10+0х0+5х5)/3)=6,45

Ну и значение коэффициента Шарпа:

Для первого трейдера: 25/25,33=0,98

Для второго трейдера: 15/6,45=2,32

Полученный результат говорит нам о том, что второй трейдер, несмотря на меньшую среднюю доходность по итогам квартала, тем не менее, является более предпочтительным. Выбирая трейдера для доверительного управления своими деньгами, я, определённо, отдал бы своё предпочтение второму.

Коэффициент Шарпа можно использовать для оценки эффективности работы ПИФов, взаимных фондов, управляющих трейдеров и т.п. Только не следует ограничиваться одним значением за определённый период времени. Для получения объективной картины следует рассматривать несколько значений данного коэффициента за различные временные промежутки.

Также следует иметь ввиду следующие моменты:

  • Данный коэффициент не различает, в какую сторону направлены отклонения доходности от базовой (безрисковой). Поэтому, строго говоря, он измеряет в большей степени совокупную волатильность портфеля, нежели риск.
  • Кроме того, этот коэффициент не видит различий между последовательно следующими друг за другом убытками, и убытками, которые относительно равномерно чередуются с прибылями.

Понравилась статья? Сохраните ссылку на неё у себя в соцсетях:

Открыть счет и забрать бонусы:
  • FinMax
    FinMax

    Бонусы для новых трейдеров до 30 000$!

  • BINARIUM
    BINARIUM

    Огромный раздел по обучению. Бесплатные прогнозы и стратегии!

Понравилась статья? Поделиться с друзьями:
Бинарные опционы для начинающих от А до Я
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: